
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Analysis of End-to-End Encryption Implementation

Across Different Meta's Applications

Salsabiila - 135220621

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113522062@std.stei.itb.ac.id

Abstract— In today's digital communication landscape, the

preservation of user privacy stands as a pressing concern,

prompting the need for robust security protocols. Meta, a

prominent tech entity, has undertaken the challenge of enhancing

user security through the recent integration of end-to-end

encryption (E2EE) as the default in its Messenger application

across Facebook and Instagram. This paper delves into a

comprehensive analysis, aiming to unveil the similarities and

differences between Messenger's E2EE implementation and the

more established E2EE model in Meta's WhatsApp. By examining

these encryption mechanisms, the study provides insights into

Meta's ongoing commitment to user privacy, unraveling the

distinctive security features within each application and

contributing valuable perspectives to the broader dialogue on

digital privacy.

Keywords—cryptography, encryption, Messenger, WhatsApp

I. INTRODUCTION

In the age of interconnected digital communication, the

feature of digital messaging can be commonly found across

every social media application out there. This shows the integral

role that digital messaging plays in human socialization,

providing individuals with an internet connection the means to

establish digital connections with people worldwide. Despite its

convenience, concerns regarding users' privacy have surfaced

over the years, prompting increased recognition of this issue

within the public sphere. Consequently, the implementation of a

security protocol, such as end-to-end encryption, is imperative

and serves as an integral component of every digital messaging

platform.

As one of the most prominent tech company, Meta, formerly

known as Facebook, provides digital messaging services to 3.14

billion of its daily active users across all their products[1], such

as Facebook, Instagram, WhatsApp. According to Facebook's

2023 global advertising audience reach statistics, Facebook

Messenger maintains 931 million monthly active users, while

Instagram's 2023 key statistics indicate that 375 million users

engage in Instagram Direct Message (DM) each month.

Furthermore, WhatsApp's 2023 user statistics point to the

platform's substantial scale with one hundred billion messages

sent daily. Given the magnitude of this company, there is an

expectation for Meta to maintain a robust and advanced safety

protocol, prioritizing the security and privacy of its user base.

One of the safety protocols implemented to safeguard user

data privacy is end-to-end encryption (E2EE). This protocol

ensures the security of communication from one endpoint to

another by utilizing an encryption key to transform transmitted

data into an unreadable, scrambled format and only authorized

users possess the requisite decryption key are able to access and

decipher the information. Notably, the key difference between

end-to-end encryption and other encryption methods in transit

lies in its comprehensive coverage. Unlike the latter, which

secures data solely during transmission over the network, end-

to-end encryption extends its protective scope until the data

reaches the recipient's device. This approach restricts access to

the transmitted data, preventing servers facilitating the

transmission from deciphering its contents[2].

The implementation of end-to-end encryption serves as a

crucial safeguard against data leaks and breaches, events that,

on a global average, result in a substantial cost of 3.86 million

USD[3]. This figure includes the expenses associated with

addressing the violation and compensating for lost revenue.

Beyond financial considerations, the repercussions may extend

to the decline of consumer trust and potential regulatory fines or

legal actions against the company. In doing so, implementing

strong security measures, including end-to-end encryption, not

only addresses financial risks but also enhances the protection

of user privacy and ensures compliance with regulatory

standards in the digital realm.

II. CRYPTOGRAPHY

Cryptography, defined as the application of mathematical

principles to encode a readable message into an unintelligible

form, derives its etymology from the Greek words "kryptos,"

meaning hidden, and "graphein," meaning to write. Its historical

application in communication dates back to around 1900 B.C.,

with evidence of secret hieroglyphics on stone tablets in ancient

Egypt. This practice continued through history, including its use

by the Spartan military in ancient Greece with tools like the

"Scytale" of Sparta and the adoption of the well-known Caesar

shift cipher in ancient Rome. The integration of mathematical

concepts like permutations and combinations into cryptography

emerged later, coinciding with advances in science and

technology, as seen in Al-Khalil's "Book of Cryptographic

Messages"[4].

In modern times, several cipher devices were developed until

the early 20th century. The Enigma machine, invented by

German engineer Arthur Scherbius after World War I, gained

prominence as the most well-known among them. German

soldiers in World War II utilized the Enigma machine to

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

exchange vital information among themselves. With the advent

of computers, cryptographic methods began incorporating more

mathematical concepts like information theory and

computational complexity, organizing sequences of binary bits.

Within the field of cryptography, the unaltered and

intelligible text is identified as plaintext, while the transformed

and encoded counterpart is referred to as ciphertext[5]. The

procedural conversion of plaintext to ciphertext is designated as

encryption or enciphering, as shown in Figure 1 below. In

contrast, the reverse of this process, involving the restoration of

ciphertext to its original plaintext form, is termed decryption or

deciphering.

Figure 1. Procedural sequence of encryption and decryption

Source:

https://www.cs.unibo.it/babaoglu/courses/security/resources/documents/intro-

to-crypto.pdf

Encryption and decryption involve the application of a

mathematical function known as a cryptographic algorithm,

which operates in conjunction with a key. This key can take the

form of a word, number, or phrase and is utilized for the

encryption or decryption process. The combination of a

cryptographic algorithm with a specific set of keys and protocols

constitutes what is known as a cryptosystem[6]. The security of

encrypted data relies on the strength of the cryptographic

algorithms employed and the confidentiality of the key. The

effectiveness of an algorithm is measure based on the time and

resources required to uncover the original plaintext.

In general, cryptographic algorithms can be categorized in

various ways, but a commonly employed classification is based

on the number of keys used in encryption and decryption. One

approach involves using a single key for both encryption and

decryption, known as Secret Key Cryptography (SKC) or

symmetric cryptography. Another method utilizes one key for

encryption and a different key for decryption, referred to as

Public Key Cryptography (PKC) or asymmetric cryptography.

Additionally, there are algorithms that forego the use of keys

entirely, relying instead on mathematical equations to achieve

irreversible encryption; these are known as hash functions[7].

A. Secret Key Cryptography (SKC)

Secret-key cryptography utilizes the same key for both

encryption and decryption, which is why it is also referred to as

symmetric cryptography, as illustrated in Figure 2 below.

Consequently, both the sender and the recipient must have

access to the key, presenting a potential challenge as securely

distributing the key can be a complex task. Several widely

employed secret-key cryptographic algorithms in contemporary

applications include the Data Encryption Standard (DES),

acknowledged as one of the most widely used, the Advanced

Encryption Standard (AES), CAST-128/256, and the

International Data Encryption Algorithm (IDEA).

Figure 2. The cryptosystem of secret key cryptography

Source: https://www.shiksha.com/online-courses/articles/types-of-

cryptography/

Secret-key cryptography is categorized into two types: stream

ciphers and block ciphers. Stream ciphers operate on a single-

bit basis, employing a feedback mechanism to generate a

changing key. Among the various stream ciphers, two

noteworthy types are self-synchronizing stream ciphers and

synchronous stream ciphers. Self-synchronizing stream ciphers

calculate each bit in the keystream based on the preceding n bits.

As the name implies, they are self-synchronized, allowing the

decryption process to synchronize with encryption by tracking

its position in the n-bit keystream. However, a drawback is the

potential for error propagation, where a distorted bit during

transmission may impact the receiving end. In contrast,

synchronous stream ciphers generate a keystream independently

of the message stream, using the same keystream generation at

both ends. While this approach avoids error propagation, the

periodic nature of the keystream in synchronous stream ciphers

means it will eventually repeat.

The alternative form of secret-key cryptography, known as

block cipher, encrypts one block of data at a time, utilizing the

same key for each block. The key distinction between block

cipher and stream cipher is that, in the former, a block of text

consistently encrypts to the same ciphertext, while the latter

produces different ciphertext for each operation. Block ciphers

operate in various modes, and four of the most pivotal modes

include Electronic Codebook (ECB) mode, the most

straightforward; Cipher Block Chaining (CBC) mode,

implementing a feedback mechanism; Cipher Feedback (CFB)

mode, incorporating the self-synchronizing stream cipher

principle within block cipher methodology; and Output

Feedback (OFB) mode, integrating synchronous stream cipher

attributes within the framework of a block cipher.

B. Public Key Cryptography (PKC)

Public-key cryptography stands as a monumental leap in

cryptographic advancements over the last three to four centuries.

Introduced in 1976 by Professor Martin Hellman and graduate

student Whitfield Diffie from Stanford University, it

revolutionized secure communication by proposing a two-key

crypto system. This innovative approach enables two parties to

engage in secure communication over a non-secure channel

without the necessity of sharing a secret-key, allowing for the

public disclosure of the key, as depicted in Figure 3 below. The

features inherent in public key cryptography include simplified

initial deployment and maintenance, as key distribution is public

and avoids the need for storing numerous secret keys. This

system is particularly well-suited for open environments,

marking a significant shift in cryptographic methodologies and

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

a substantial enhancement to the security landscape.

Figure 3. The cryptosystem of public key cryptography

Source: https://www.shiksha.com/online-courses/articles/types-of-

cryptography/

Public-key cryptography relies on a "one-way" mathematical

function, which is easy to compute but presents a challenging-

to-compute inverse function without the necessary information.

In a generic public-key cryptography system, two

mathematically related keys are employed to ensure that

possessing information about one key does not facilitate the

determination of the other key. This design enables the

widespread sharing of the designated public key, while

safeguarding the secrecy of the designated secret key from

unauthorized parties. With one key dedicated to encryption and

another to decryption, the order of application is irrelevant as

both keys are essential, leading to the term asymmetric

cryptography. Among the public-key cryptography algorithms

in current use, RSA takes the lead as the first and extensively

utilized algorithm, alongside Diffie-Hellman, Digital Signature

Algorithm (DSA), and Elliptic Curve Cryptography (ECC).

C. Hash Function

Hash functions, also referred to as message digests or one-

way encryption, and formerly known as pseudo-random

functions (PRF), are algorithms that operate without a key. They

compute a fixed-length hash value from plaintext, rendering it

impossible to determine the original plaintext length from a

hash-created ciphertext. Hash algorithms are typically employed

to ensure the integrity of a file, safeguarding it against

unauthorized alterations by intruders or viruses. Despite a

common misconception that two files cannot share the same

hash value, such an occurrence is still possible. Therefore, a hash

function must possess two essential properties: it must be one-

way, as mentioned earlier, and it must exhibit resistance to

collisions.

Despite the potential for collisions, discovering two files with

the same hash value remains a challenging task. This

emphasizes the prevalent use of hash functions in information

security and computer forensic applications, often enhanced by

specific extensions such as hash libraries, which consist of sets

of hash values associated with known files, rolling hashes

computed through a fixed-length sliding-window-like approach,

and fuzzy hashes representing hash values indicative of similar

inputs.

III. DISCUSSION

A. End-to-End Encryption (E2EE)

End-to-end encryption is a system where data is encrypted

from one endpoint to another, ensuring that even unauthorized

third parties, including those responsible for relaying

transmitted data, cannot decipher the content[8]. A prevalent

implementation in this domain is The Signal Protocol,

recognized for its robust security and widely adopted by many

companies. Notably, being an open-source solution, The Signal

Protocol permits independent audits to identify and address

potential security vulnerabilities, enhancing its credibility and

reliability in safeguarding sensitive information.

The Signal Protocol employs a combination of symmetric and

asymmetric encryption for both messages and calls. It utilizes

the Elliptic Curve Diffie-Hellman (ECDH) key agreement

protocol, specifically utilizing Curve25519, for the

establishment of a shared secret key. This involves creating a

private key for generating a public key, which is then shared

with the other device. The shared secret key is employed to

derive three session keys: one for message encryption using

AES-256, one for message authentication, and one for call

encryption using HMAC-SHA256.

Additionally, the Signal Protocol incorporates a ratchet

mechanism to address situations where a device's keys are

compromised, preventing the decryption of past messages by

potential attackers. During the initial key exchange using

ECDH, a master secret key is created, and from it, a Root Key

and a Chain Key are derived for each device. When a message

is sent, a Message Key is generated from the current Chain Key

to encrypt the message. Subsequently, the used Chain Key is

"ratcheted" forward, and a new one is generated, ensuring that

the currently used Message Key cannot be used to access

previous Chain Keys.

Furthermore, both Root Keys and Chain Keys are periodically

regenerated by the Signal Protocol through new ECDH

agreements, preventing a leaked Root Key from being utilized

to access Chain Keys for current and future messages. All key

pairs, except for the Identity Key, are temporary and frequently

regenerated, generating a new master secret key. This approach

aims to limit the potential compromise of data in case a key is

leaked.

While Signal Protocol has numerous strengths and

advantages, one notable challenge from a user's standpoint is the

cross-device transfer of messages. Signal Protocol requires

manual transfer of messages between devices, presenting a

potential hurdle to a seamless user experience. However,

ongoing efforts to enhance Signal Protocol include the

introduction of "Sealed Sender," a feature designed to facilitate

cross-device messaging and synchronizing.

This aspect becomes particularly intriguing when comparing

Messenger’s implementation of end-to-end encryption to

WhatsApp’s since it has had end-to-end encryption in place for

an extended period, offering a longer-established foundation

than the recently implemented default end-to-end encryption for

Messenger, now used across Facebook and Instagram apps.

Notably, in contrast to WhatsApp, Facebook and Instagram

support cross-device messaging and syncing, posing a notable

technical challenge due to the default end-to-end encryption,

which limits server access to facilitate message transmission. A

detailed analysis of the end-to-end encryption mechanisms

employed by both WhatsApp and Messenger (utilized by

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Facebook and Instagram) will be further discussed, focusing

specifically on general and message encryption, to explore the

similarities and differences between the two.

B. Similarities Between WhatsApp’s and Messenger’s

End-to-End Encryption

As both WhatsApp and Messenger utilize the Signal Protocol,

many encryption protocols employed in these applications are

similar, although certain protocols exclusive to WhatsApp are

absent in Messenger due to inherent limitations. The

cryptographic operations utilized by both applications

encompass ECDH, X3DH, AES, CBC, HMAC-SHA256,

HKDF, and incorporate a double-ratchet system. Additionally,

both applications feature identical public key and session key

types. The public key types or pre-key utilized are enumerated

as follows:

1. Identity Key Pair (IK): A long-term Curve25519 key

pair generated during the registration process.

2. Signed Pre-Key (SPK): A medium-term Curve25519

key pair, also generated at registration time, signed by the

Identity Key, and subject to periodic rotation.

3. One-Time Pre-Keys (OPK): A queue of Curve25519

key pairs for single use, generated at registration time,

and replenished as required. A singular key is restricted

to use in a single X3DH protocol operation.

Simultaneously, the session key types employed are as

follows:

1. Root Key: A 32-byte value employed in the creation of

Chain Keys.

2. Chain Key: A 32-byte value utilized in the creation of

Message Keys.

3. Message Key: An 80-byte value employed in the

encryption of message contents. This consists of 32 bytes

for an AES-256 key, 32 bytes for an HMAC-SHA256

key, and 16 bytes for an IV.

The Elliptic Curve Diffie-Hellman (ECDH) key agreement

protocol, specifically Curve25519, stands out as the fastest

option available. It enables two parties to establish a shared

secret over an insecure channel by using one party's private key

and the other's public key. This shared secret key is then

employed for encrypting and authenticating messages

exchanged between the two parties. Notably, the shared secret

key created through elliptic curve cryptography possesses a

considerably smaller size while maintaining a comparable level

of strength when compared with a standard key. For instance, a

key generated using elliptic curve with a length of 512 bits is

roughly equivalent in strength to one created using standard

asymmetric cryptography with a length of 15,360 bits. This

efficiency facilitates a rapid and secure key agreement

mechanism, as the smaller key size contributes to an expedited

key exchange[9].

X3DH, or Extended Triple Diffie-Hellman Key Agreement,

is an extension of the Diffie-Hellman protocols designed to

address the limitations of asynchronous settings. An example of

such a scenario is when the recipient of a message is offline

while the sender remains online. The X3DH protocol comprises

three significant phases, outlined as follows:

1. Publishing keys: A collection of public keys from the

recipient is transmitted to the server prior to the start of

communication. The initial key sent is the identity key,

transmitted only once to the server. Subsequent keys

include the signed pre-key and the pre-key signature,

which are regularly updated at set intervals. When the

server does not have a sufficient quantity of the

recipient's one-time pre-keys, a new one is transmitted,

accompanied by the deletion of the old key.

2. Sending the initial message: For the initiation of the

X3DH key agreement, the sender is required to retrieve

the recipient’s identity key, signed pre-key, pre-key

signature, and one of their one-time pre-keys if available;

otherwise, the one-time pre-key retrieval is optional since

sending a message is not mandatory. Initially, the sender

verifies the pre-key signature, and if unsuccessful, the

entire process is terminated. On successful verification, a

pair of temporary keys is generated, which are then

utilized to calculate the secret key. An associated data

byte is derived, including both the sender’s and

recipient’s identity keys. Subsequently, a message is sent

to the recipient, containing the sender’s identity key,

temporary public key, an identifier specifying which of

the recipient’s pre-keys has been utilized, and an initial

ciphertext.

3. Receiving the initial message: Upon receiving the

initial message, the recipient employs their own identity

private key, along with the sender's identity key,

temporary public key, and the private counterparts of the

signed pre-key and one-time pre-key. Only after this step

can the deciphering process start. In the event of the

deciphering process failing, the secret key is promptly

deleted, and the process is terminated. Alternatively, if

the decoding process succeeds, the private one-time pre-

key is erased, while the secret key may be employed for

post-X3DH processing.

The Advanced Encryption Standard (AES) is a widely

employed symmetric encryption standard, representing a set of

block ciphers distinguished by their key sizes. For instance, the

commonly used AES-256, employed by Meta, features a 256-

bit key. AES encryption involves permutating, substituting, and

shifting data in a series of rounds determined by the key size; for

instance, AES-256 requires 14 rounds for encryption. This

encryption method is utilized to secure messages transmitted

between parties. Both WhatsApp and Messenger specifically

employ AES-256-CBC[10]. CBC, or Cipher Block Chaining, is

a mode of operation well-suited for certain potential attacks but

lacks message authentication. Therefore, both applications

incorporate HMAC-SHA256 alongside it[11].

As mentioned earlier, HMAC-SHA256 serves the crucial role

of authenticating and ensuring the integrity of a message.

HMAC, an acronym for Hash-based Message Authentication

Code, represents a cryptographic technique grounded in the

principles of the SHA-256 hash function. In this process, the

encrypted message and the secret key undergo hashing; the

resulting hash value, combined with the secret key, undergoes a

second hashing iteration, producing a final output of 256 bits.

HKDF, or Hierarchical Key Derivation Function, builds upon

HMAC-SHA256 to specifically generate the Root Key and

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Chain Key. This function, true to its name, is designed to derive

keys from a shared secret, enhancing the security architecture.

A double-ratchet system is created by integrating two distinct

ratchet systems: the symmetric-key ratchet illustrated in Figure

4 and the Diffie-Hellman ratchet depicted in Figure 5[12].

Figure 4. Symmetric ratchet system

Source: https://arxiv.org/pdf/2209.11198.pdf

The KDF function serves as the core component of the

symmetric ratchet system. It computes an output by taking input

data and a random KDF key or chain keys, as illustrated in

Figure 4 above, which are utilized for sending and receiving

chains. A segment of this output becomes the new KDF Chain

Key, replacing the old one, while the remaining portion

functions as a message key for encrypting transmitted messages

using AES. However, a drawback of the symmetric ratchet

system is its vulnerability to an attacker obtaining both the

sending and receiving chain keys. In such a scenario, the

attacker could calculate all future keys and decrypt upcoming

messages. To enhance security, the symmetric ratchet system is

employed in conjunction with the DH ratchet system, ensuring

that the chain key output is influenced by the DH outputs, thus

minimizing the risk of an attacker obtaining both the sending

and receiving chain keys.

Figure 5. Diffie-Hellman ratchet system

Source: https://arxiv.org/pdf/2209.11198.pdf

The Diffie-Hellman (DH) ratchet operates by utilizing the

user's private key and the other party's public key. This

information is processed through a DH function, generating an

output that establishes a sending/receiving chain matching the

other party's. When a message is sent or received, the respective

sending or receiving chain undergoes the symmetric ratchet

system to derive the message key. Following this, the DH ratchet

system is applied, incorporating the private and public keys,

with the output serving as input for the symmetric ratchet

system. This process results in a new message key for

encrypting the message. The term "double ratchet" stems from

the fact that the output of the symmetric ratchet system is used

as the input for the DH ratchet system, and vice versa.

C. Differences Between WhatsApp’s and Messenger’s

End-to-End Encryption

WhatsApp and Messenger, both utilizing the Signal protocol

for end-to-end encryption (E2EE), exhibit variations in their

implementation. While sharing a common encryption

framework, their distinct features contribute to differences.

WhatsApp follows a one-account-one-primary-device model,

emphasizing security within a singular device, whereas

Messenger accommodates cross-device messaging. Despite

their shared protocol, these platform-specific features result in

nuanced distinctions in their E2EE approaches.

The initial difference between WhatsApp and Messenger's

end-to-end encryption lies in their respective registration

processes. In WhatsApp, client registration begins with primary

device registration, involving the storage of the identity key,

signed pre-key, along with its signature, and a set of one-time

pre-keys associated with the user's identifier on the server, as

initiated by the WhatsApp client[13]. In contrast, Messenger

follows a device registration approach, similar in content to

WhatsApp but specifically associated with the user's device,

facilitating offline session establishment between two devices,

especially when one is offline[14]. Notably, WhatsApp

introduces companion device registration after primary device

registration, where the user's primary device creates an Account

signature using the new device's identity key. The companion

device responds by generating a Device Signature, signing the

primary's public key identity key, allowing the establishment of

end-to-end encrypted sessions on the companion device.

WhatsApp's implementation introduces an additional key type,

the Linking Secret Key, which is a 32-byte value generated on a

companion device and securely transmitted to the primary

device. This key verifies an HMAC of the linking payload

received from the primary device, and the transmission is

facilitated through scanning a QR code. Furthermore,

WhatsApp incorporates companion linking data, including:

1. Linking Metadata: An encoded data blob containing

metadata associated with a linked companion device.

This information, combined with the companion device's

Identity Key, serves to uniquely identify the linked

companion across WhatsApp clients.

2. Signed Device List Data: An encoded list detailing the

companion devices currently linked at the time of

signing. This list is signed by the primary device's

Identity Key, utilizing the 0x0602 prefix.

3. Account Signature: A Curve25519 signature computed

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

over the 0x0600 prefix, Linking Metadata, and the public

Identity Key of the companion device. This computation

is performed using the primary device's Identity Key.

4. Device Signature: A Curve25519 signature computed

over the 0x0601 prefix, Linking Metadata, the public

Identity Key of the companion device, and the public

Identity Key of the primary device. This calculation is

executed using the companion device's Identity Key.

WhatsApp features a strong end-to-end encryption

framework, offering additional security measures not found in

Messenger. One noteworthy inclusion is the encryption of

message add-ons within community announcement groups. In

these groups, regular members are restricted from sending

messages and can solely interact with the content shared by

group administrators. WhatsApp employs add-on sender keys,

distinct from conventional group sender keys, to encrypt these

add-ons. When an administrator sends a message in a

community announcement group, the message is encrypted

similarly to a standard group message. However, the end-to-end

encrypted message payload includes an additional element—a

randomly generated key known as the message secret.

For the end-to-end encryption of add-ons in WhatsApp

Community Announcement Groups, established pairwise

encrypted sessions play a crucial role in distributing a dedicated

add-on sender key component, following the Signal Messaging

Protocol. Upon sending an add-on to a community

announcement group for the first time, an add-on sender key is

generated and distributed to each member's device within the

group, utilizing the pairwise encrypted sessions. The add-on

content undergoes encryption using a key derived from the

target message's "Message Secret" and is then encrypted once

more using the add-on sender key. This ensures an efficient and

secure fan-out for the add-ons sent to Community

Announcement Groups.

While it might appear that Messenger falls short in

comparison to WhatsApp, Meta has made significant strides in

addressing the primary challenge of the Signal Protocol,

particularly in the realm of cross-device messaging. The Signal

Protocol traditionally stores message data locally, requiring

manual transfer via Bluetooth. This limitation is a key factor in

restricting a WhatsApp account to a single primary device. In

response, Meta's engineers have introduced their proprietary

encrypted storage protocol named Labyrinth. This innovative

protocol allows users' data to be securely stored on the

company's servers, ensuring that the data remains encrypted and

inaccessible to the company itself[15].

Labyrinth not only securely stores encrypted user data but

also manages post-revocation messages, accommodating both

the addition and removal of devices from a user's account. This

is crucial to ensure that devices removed from the account have

no access to new messages. The system also adeptly handles

sent attachments, storing them separately from mailboxes. The

cryptographic primitives employed by Labyrinth include AES-

GCM-Extended, Labyrinth HPKE, XEdDSA2, HMAC-

SHA256, HKDF-SHA256, and a distinctive construction

termed The Oblivious Revocable Function (ORF)[16]. The ORF

is built around the Ristretto 255 group and is designed to reduce

linkability between attachments and their respective mailboxes.

The ORF comprises two pseudo-random function (PRF)

chains—one running on the client side and the other on the

server side. Each entity possesses its secret scalar key, allowing

these keys to be regenerated to new ones in a manner that

maintains consistency between the output of the two PRFs for a

given input. This distinctive design ensures that the client side

is unaware of the overall output, and similarly, the server side

remains unaware of the overall input. As a result, this

architecture facilitates access to the system by different devices

or clients with unique keys, allowing the server to revoke access

from a client while preserving the integrity of inputs.

The backend of Labyrinth comprises two essential

components: one containing operational protocol data, known as

the mailbox metastore, and another housing message ciphertexts

in a structured database, referred to as the mailbox. The

delineation between these components, along with much of the

protocol's intricacy, stems from the objective of treating revoked

devices as potential threats. Consequently, the protocol is

designed to facilitate key rotation while accommodating devices

that may remain offline for extended durations.

Each instance of Labyrinth is characterized by global values,

including a unique identifier labelled labyrinthID, assigned by

the server and associated with the mailbox metastore, and

mailboxRootSalt, a non-secret random value unique to the

Labyrinth instance. In the Labyrinth context, any entity with

access to a Labyrinth mailbox is termed a device. While

commonly physical devices like smartphones, they may also be

termed "virtual devices" – collections of cryptographic keys

treated as devices by the protocol, not tied to a physical device.

Each Labyrinth device possesses specific keys, and within the

mailbox metastore, the server maintains, per-device, various

pieces of information. To facilitate key rotation, Labyrinth

incorporates the concept of an "epoch," representing a

timeframe during which no device is revoked, although devices

can be added. Each epoch is linked to specific values to support

the seamless functioning of the protocol.

IV. CONCLUSION

In conclusion, end-to-end encryption (E2EE) is a critical

security measure ensuring data remains encrypted from one

endpoint to another, preventing unauthorized access. The Signal

Protocol, widely adopted for its robust security, employs a

combination of symmetric and asymmetric encryption, featuring

Elliptic Curve Diffie-Hellman (ECDH) for key agreement. The

protocol includes a ratchet mechanism to counter key

compromise and incorporates periodic regeneration of Root and

Chain Keys for enhanced security. While Signal Protocol

exhibits strengths, the challenge of cross-device messaging

persists, addressed by ongoing efforts such as the "Sealed

Sender" feature.

Both WhatsApp and Messenger, utilizing the Signal Protocol,

share encryption protocols, including ECDH, X3DH, AES,

CBC, HMAC-SHA256, and HKDF, featuring a double-ratchet

system. The public and session key types used align between the

two applications. ECDH, particularly Curve25519, stands out

for its efficiency in key exchange. X3DH addresses

asynchronous settings, ensuring secure communication

initiation even when the recipient is offline.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Differences arise in their implementation, with WhatsApp

emphasizing one-account-one-primary-device security, while

Messenger allows cross-device messaging. WhatsApp's

registration involves primary device and companion device

steps, introducing additional key types like the Linking Secret

Key. WhatsApp further encrypts message add-ons in

community announcement groups, enhancing security.

Messenger, with a more recent implementation of default

end-to-end encryption, accommodates cross-device messaging.

Meta's Labyrinth addresses cross-device limitations in Signal

Protocol, introducing encrypted storage and handling post-

revocation messages. Labyrinth uses innovative cryptographic

primitives, including The Oblivious Revocable Function,

ensuring secure access from different devices.

In summary, while both WhatsApp and Messenger share the

foundational Signal Protocol, their nuanced implementations

reflect platform-specific features and security priorities.

Ongoing developments continue to refine end-to-end encryption

mechanisms, emphasizing the importance of robust encryption

in safeguarding user data.

V. ACKNOWLEDGMENT

The author expresses heartfelt appreciation to their parents,

Dr. Fariska Zakhralativa Ruskanda, S.T., M.T., the discrete

mathematics lecturer, and all friends who have consistently

supported them throughout this semester.

REFERENCES

[1] “Meta global family DAU 2023,” Statista. Accessed: Dec. 09, 2023.
[Online]. https://www.statista.com/statistics/1092227/facebook-product-

dau/#:~:text=During%20the%20third%20quarter%20of

[2] IBM, “What is end-to-end encryption? | IBM,” www.ibm.com, 2023.
Accessed: Dec. 09, 2023. [Online]. https://www.ibm.com/topics/end-to-

end-encryption.

[3] IBM, “Cost of a data breach 2023,” IBM, 2023. Accessed: Dec. 09, 2023.
[Online]. https://www.ibm.com/reports/data-breach

[4] S. Naser, “CRYPTOGRAPHY: FROM THE ANCIENT HISTORY TO

NOW, IT’S APPLICATIONS AND A NEW COMPLETE NUMERICAL
MODEL,” International Journal of Mathematics and Statistics Studies,

vol. 9, no. 3, pp. 11–30, 2021. Accessed: Dec. 10, 2023. [Online].

Available: https://www.eajournals.org/wp-
content/uploads/Cryptography.pdf.

[5] K. Rosen, “Series Editor DISCRETE MATHEMATICS AND ITS

APPLICATIONS An INTRODUCTION to CRYPTOGRAPHY Second
Edition.” Accessed: Dec. 10, 2023. [Online]. Available:

https://mrajacse.files.wordpress.com/2012/01/an-introduction-to-

cryptography.pdf
[6] N. Papanikolaou, “An introduction to cryptography,” PGP Corporation,

version 8.0, October 2002. Accessed: Dec. 11, 2023. [Online]. Available:

https://www.cs.unibo.it/babaoglu/courses/security/resources/documents/i
ntro-to-crypto.pdf

[7] G. Kessler, “An Overview of Cryptography An Overview of

Cryptography,” 1998. Accessed: Dec. 11, 2023. [Online]. Available:
https://www.cs.princeton.edu/~chazelle/courses/BIB/overview-crypto.pdf

[8] A. Greenberg, “Hacker Lexicon: What Is End-to-End Encryption?,”

Wired, Nov. 25, 2014. Accessed: Dec. 11, 2023. [Online].

https://www.wired.com/2014/11/hacker-lexicon-end-to-end-encryption/

[9] M. Niasar, R. El Khatib, R. Azarderakhsh, and M. Mozaffari-Kermani,
"Fast, Small, and Area-Time Efficient Architectures for Key-Exchange on

Curve25519," in 2020 IEEE 27th Symposium on Computer Arithmetic

(ARITH), 2020, pp. 72-79.
[10] V. Bhuse, “Review of End-to-End Encryption for Social Media,”

International Conference on Cyber Warfare and Security, vol. 18, no. 1,

pp. 35–37, Feb. 2023. Accessed: Dec. 11, 2023. [Online]. doi:
https://doi.org/10.34190/iccws.18.1.1017.

[11] N. Kishore and B. Kapoor, "Attacks on and Advances in Secure Hash
Algorithms," IAENG International Journal of Computer Science, vol. 43,

no. 3, pp. 25-34, 2016.

[12] P. Prasad and G. Neogi, “A Dive into WhatsApp’s End-to-End
Encryption,” Sep. 2022. Accessed: Dec. 11, 2023. [Online]. Available:

https://arxiv.org/pdf/2209.11198.pdf

[13] WhatsApp, “WhatsApp Encryption Overview: Technical White Paper,”
Sep. 2023. Accessed: Dec. 11, 2023. [Online]. Available:

https://scontent.fbdo2-1.fna.fbcdn.net/v/t39.8562-

6/384251896_820338303082371_8514785982310046047_n.pdf?_nc_cat
=100&ccb=1-

7&_nc_sid=e280be&_nc_ohc=SbnQ_wvTBFUAX_O_IE4&_nc_oc=AQ

nKpAFl9OxxHMBMt5KksMLVpvUq1SYJuXq9R2Y7WrQJrirzoXZbVf
22Fw7kyq_2si8&_nc_ht=scontent.fbdo2-1.fna&oh=00_AfB8u3iyb-

lHXDWquVZB6wSjJkosGhV9sfMwZm3uN5HlFw&oe=657B2111

[14] Meta, “Messenger End-to-End Encryption Overview,” Dec. 2023.
Accessed: Dec. 11, 2023. [Online]. Available:

https://engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-

to-EndEncryptionOverview_12-6-2023.pdf
[15] L. H. Newman, “Why It Took Meta 7 Years to Turn on End-to-End

Encryption for All Chats,” Wired, Dec. 07, 2023. Accessed: Dec. 11, 2023.

[Online]. https://www.wired.com/story/meta-messenger-instagram-end-
to-end-encryption/ (accessed Dec. 11, 2023).

[16] Meta, “The Labyrinth Encrypted Message Storage Protocol,” Dec. 2023.

Accessed: Dec. 12, 2023. [Online]. Available:
https://engineering.fb.com/wp-

content/uploads/2023/12/TheLabyrinthEncryptedMessageStorageProtoco

l_12-6-2023.pdf

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2023

Salsabiila, 13522062

